





# Emergency Delivery System Development for Disinfecting Ballast Water:

Implications for Interim Treatment
September 24 2009

Presented by: Linda Drees NPS

## Project Partners

- USGS Leetown/Seattle Science Centers
- Minnesota LCCMR
- Great Lakes Fisheries Trust
- American Steamship Co.
- National Park Service
- NOAA
- Glosten & Associates
- National Parks of Lake Superior Foundation

### **Deliverables**

- Provide scientifically verified methods to dose, mix and neutralize a biocide in full or empty tanks onboard vessels that have no ballast treatment system installed. (Study uses a dye rather than an actual biocide)
- Evaluate the effectiveness of different mixing methods for full ballast tanks (the most difficult emergency treatment situation) and empty tanks.
- Produce draft adaptive management protocols and a salvors guide for delivery system mechanisms to be used for emergency treatment on grounded vessels or vessels containing high risk ballast.
- Produce a risk assessment model to assist managers in evaluating when emergency or interim treatment is required

# Program Stepwise Approach Proposed Efforts

|                                              | I<br>I                     | Mixing<br>Method     | Test |                                                                       |                                                    | Dye Method/ Particulars  Method                                                                                                                    |  |
|----------------------------------------------|----------------------------|----------------------|------|-----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                              | · <del></del>              | Class                | No.  | Test Description                                                      | Mixing Energy                                      |                                                                                                                                                    |  |
| (Prior Effort) Field<br>Verification Testing |                            | Passive<br>Mixing    |      | Ship's Underway Motion:                                               | Ship's Motion                                      |                                                                                                                                                    |  |
|                                              |                            |                      | 1    | Variation A: Bulk Dye<br>Dose on Top                                  |                                                    | Bulk Load Applied at: Tank Manhole or Vent Bulk Load Applied at: Tank Sounding Tube Bulk Load Applied by means of perforated tube hung vertically. |  |
|                                              |                            |                      | 2    | Variation B: Bulk Dye Dose through Sounding                           |                                                    |                                                                                                                                                    |  |
|                                              |                            |                      | 3    | Tube  Variation C: Bulk Dye  Dose distributed in the  Vertical Column |                                                    |                                                                                                                                                    |  |
|                                              |                            |                      | 4    | Filling Empty Tank: Bulk<br>Dye Dose on Bottom                        | Hydraulic Energy of<br>Loaded Ballast<br>Water     | Bulk Load Applied at Tank<br>Manhole or Tank Vent                                                                                                  |  |
|                                              | I<br>I<br><u>I</u>         |                      | 5    | In-Line Dye Injection into<br>Ballast Main                            | Turbulent Flow of<br>Ballast Water in<br>Pipe      | Metering Pump Injection in Ballast Main                                                                                                            |  |
|                                              | <br>                       | Active<br>Mechanical | 6    | Axial Flow Propeller                                                  | Mechanical Device<br>Inserted thru Tank<br>Manhole | Metering Pump Injection behind Propeller Blade                                                                                                     |  |
| (Prior Effort) CFD                           |                            |                      |      | Venturi Mixing In Tank                                                | Venturi Device<br>Inserted thru Tank<br>Manhole    |                                                                                                                                                    |  |
| Analysis                                     | <br> <br>                  | Mixing               | 7    | Variation A: Dye Pumped into Eductor Line                             |                                                    | Metering Pump Injection into Eductor                                                                                                               |  |
| (Proposed Effort) Scale Model Analysis ——    | -<br>-<br>-<br>-<br>-<br>- |                      |      | Variation B: Dye Proportioned by Venturi                              |                                                    | Venturi Effect Using a<br>Metering Valve to                                                                                                        |  |
| and Field Testing                            |                            |                      | 8    | Effect into Eductor Line Variation C: Dye Bulk                        |                                                    | Proportion Dye into Eductor Bulk Load Dropped thru Tank Manholes                                                                                   |  |

#### **Ballast Treatment Chemicals.**

Evaluation of Chemicals for Potential Treatment of Ballast Water," US Coast Guard Research and Development Center, October 2004.

Group A = Kills Broad Spectrum of Organisms,
Group B = Kills Narrow Spectrum of Organisms (USCG, 2004)

Table 5-1. Evaluation of Group A and Group B Biocides.

|                         | Effective                                |                  |                 |                     |                    |                                       |                     |                    |                        |
|-------------------------|------------------------------------------|------------------|-----------------|---------------------|--------------------|---------------------------------------|---------------------|--------------------|------------------------|
| Biocide                 | against Broad<br>Range of<br>Organisms?* | pH<br>Inhibition | Adsorp<br>-tion | Toxic<br>byproducts | Recalci-<br>trance | Shipboard<br>Application<br>Difficult | Cost<br>Prohibitive | Safety<br>Concerns | Regulatory<br>Concerns |
| Group A                 |                                          |                  |                 |                     |                    |                                       |                     |                    |                        |
| Biocides                |                                          |                  |                 |                     |                    |                                       |                     |                    |                        |
| Chlorine                | Yes                                      | Yes              | Yes             | Yes                 | Some               | Yes                                   | Somewhat            | Yes                | Yes                    |
| Chlorine dioxide        | Yes                                      | No               | No              | Yes†                | Some               | Somewhat                              | Yes                 | Yes                | Some                   |
| Hydrogen<br>peroxide    | Yes                                      | Yes              | Un-<br>known    | Yes†                | No                 | Somewhat                              | Somewhat            | Yes                | Some                   |
| Glutaraldehyde          | Yes                                      | Yes              | No              | No                  | No                 | No                                    | Somewhat            | No                 | No                     |
| Peraclean®              | Yes                                      | Unknown          | Yes             | Unknown             | Unknown            | No                                    | No                  | Yes                | Some                   |
| Cationic<br>surfactants | Yes                                      | Unknown          | No              | Unknown             | Some               | Unknown                               | Somewhat            | Yes                | Some                   |
| SeaKleen <sup>®</sup>   | Yes                                      | Unknown          | No              | No                  | No                 | No                                    | No                  | No                 | No                     |
| Phenol                  | Yes                                      | Unknown          | Yes             | No                  | No                 | Somewhat                              | Somewhat            | Yes                | Yes                    |
| Group B<br>Biocides     |                                          |                  |                 |                     |                    |                                       |                     |                    |                        |
| Copper                  | Yes                                      | Some             | Yes             | No                  | Some               | Somewhat                              | No                  | Yes                | Yes                    |
| Bromine                 | No                                       | Yes              | Yes             | Yes                 | Unknown            | Yes                                   | No                  | Yes                | No                     |
| Iodine                  | No                                       | Unknown          | Un-<br>known    | Yes                 | Unknown            | Somewhat                              | Somewhat            | Yes                | No                     |
| Sodium chlorite         | No                                       | Unknown          | Un-<br>known    | Yes                 | Some               | Somewhat                              | No                  | Yes                | Yes                    |
| Chloramines             | No                                       | No               | Some            | Yes                 | Some               | Somewhat                              | No                  | Yes                | Unknown                |
| Ozone                   | No                                       | No               | Yes             | Yes†                | No                 | Yes                                   | Yes                 | Yes                | Yes                    |
| Formaldehyde            | No                                       | Some             | Un-<br>known    | No                  | No                 | Somewhat                              | Somewhat            | Yes                | Yes                    |
| Ethylene oxide          | No                                       | No               | No              | Yes†                | No                 | Yes                                   | Unknown             | Yes                | Yes                    |
| Dowicil® 75             | No                                       | No               | Yes             | Yes                 | No                 | Unknown                               | Unknown             | Yes                | Some                   |

<sup>\*</sup> If the biocide was found to be effective against six or more of the nine target organisms, a "yes" was entered. If it was effective against fewer than six, a "no" was entered.

<sup>†</sup> Toxic byproducts may form depending on existing environmental conditions

## Can NAOH be Used to Treat Ballast Water or NOBOB Residuals?

**USGS** Research conducted in partnership with the Great Ships Initiative



## Early Studies Demonstrating Biocidal Effects of NAOH Addition

1. Grabow, et al. (1969), Water Research, (3):943-953.

Raising pH of sewage works effluent to 11.5 for 1 hr destroyed all gram negative bacteria and reduced the total plate count by 99%.

2. Sattar, et al., (1976), Can. J. Public Health, (67):221-226.

Demonstrated a complete kill of a human pathogenic virus (Poliovirus type 1, Sabin) in sewage following treatment to pH 11.5 for 1 hr.

3. Grabow, et al., (1978), Appl. Environ. Microbiology (35):663-669.

Achieved reductions in 97.1 – 100% of enteric viruses as well as coliform bacteria and coliphages when treating municipal wastewater to pH 11.1

### Corrosion Rate of Iron and Steel

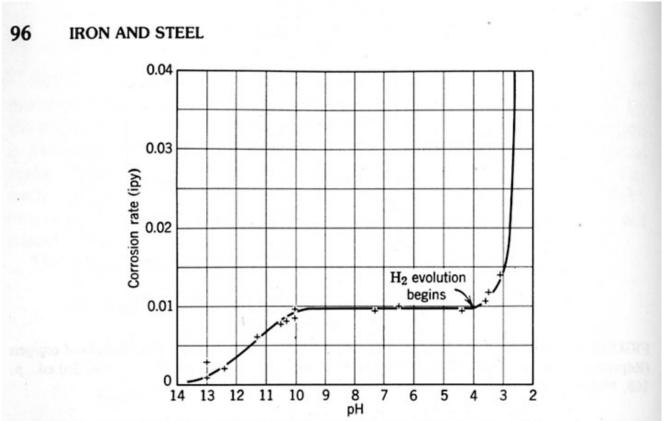



FIGURE 4. Effect of pH on corrosion of iron in aerated soft water, room temperature (Whitman, Russell, and Altieri<sup>8</sup>).

>Source: Uhlig, H.H. and R. W. Revie. 1985. Corrosion and Corrosion Control, 3<sup>rd</sup> Ed. Wiley Interscience, New York, p. 96.

# Draft Emergency Delivery System Development Document Available Upon Request